Complex Numbers And Quadratic Equations question 399

Question: If $ $ $ x+\frac{1}{x}=2\cos \theta , $ then x is equal to [RPET 2001]

Options:

A) $ \cos \theta +i\sin \theta $

B) $ \cos \theta -i\sin \theta $

C) $ \cos \theta \pm i\sin \theta $

D) $ \sin \theta \pm i\cos \theta $

Show Answer

Answer:

Correct Answer: C

Solution:

$ x+\frac{1}{x}=2\cos \theta $
$ \Rightarrow x^{2}-2x\cos \theta +1=0 $
Þ $ x=\frac{2\cos \theta \pm \sqrt{4{{\cos }^{2}}\theta -4}}{2} $
Þ $ x=\cos \theta \pm i\sin \theta $ .