Complex Numbers And Quadratic Equations question 40

Question: If $ z $ is a complex number such that $ z^{2}={{(\bar{z})}^{2}}, $ then

Options:

A) $ z $ is purely real

B) $ z $ is purely imaginary

C) Either $ z $ is purely real or purely imaginary

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ z=x+iy $ , then its conjugate $ \overline{z}=x-iy $ Given that $ z^{2}={{(\overline{z})}^{2}} $
Þ $ x^{2}-y^{2}+2ixy=x^{2}-y^{2}-2ixy $ Þ $ 4ixy=0 $ If $ x\ne 0 $ then $ y=0 $ and if $ y\ne 0 $ then $ x=0 $