Complex Numbers And Quadratic Equations question 406

Question: The smallest positive integer $ n $ for which $ {{(1+i)}^{2n}}={{(1-i)}^{2n}} $ is [Karnataka CET 2004]

Options:

A) 1

B) 2

C) 3

D) 4

Show Answer

Answer:

Correct Answer: B

Solution:

We have $ {{(1+i)}^{2n}}={{(1-i)}^{2n}} $
$ \Rightarrow {{( \frac{1+i}{1-i} )}^{2n}}=1 $
$ \Rightarrow {{(i)}^{2n}}=1 $
$ \Rightarrow {{(i)}^{2n}}={{(-1)}^{2}} $
$ \Rightarrow {{(i)}^{2n}}={{(i^{2})}^{2}} $
$ \Rightarrow {{(i)}^{2n}}={{(i)}^{4}} $
$ \Rightarrow 2n=4 $
$ \Rightarrow n=2 $ .