Complex Numbers And Quadratic Equations question 407

Question: The values of $ x $ and $ y $ satisfying the equation $ \frac{(1+i)x-2i}{3+i} $ $ +\frac{(2-3i)y+i}{3-i}=i $ are [IIT 1980; MNR 1987]

Options:

A) $ x=-1,y=3 $

B) $ x=3,y=-1 $

C) $ x=0,y=1 $

D) $ x=1,y=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{(1+i)x-2i}{3+i}+\frac{(2-3i)y+i}{3-i}=i $
Þ $ (4+2i)x+(9-7i)y-3i-3=10i $ Equating real and imaginary parts, we get $ 2x-7y=13 $ and $ 4x+9y=3 $ . Hence $ x=3 $ and $ y=-1 $ . Trick : After finding the equations, no need to solve them, put the values of $ x $ and $ y $ given in the options and get the appropriate option.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें