Complex Numbers And Quadratic Equations question 409

Question: $ ( \frac{1}{1-2i}+\frac{3}{1+i} )( \frac{3+4i}{2-4i} )= $ [Roorkee 1979; RPET 1999; Pb. CET 2003]

Options:

A) $ \frac{1}{2}+\frac{9}{2}i $

B) $ \frac{1}{2}-\frac{9}{2}i $

C) $ \frac{1}{4}-\frac{9}{4}i $

D) $ \frac{1}{4}+\frac{9}{4}i $

Show Answer

Answer:

Correct Answer: D

Solution:

$ ( \frac{1}{1-2i}+\frac{3}{1+i} )( \frac{3+4i}{2-4i} ) $ $ =[ \frac{1+2i}{1^{2}+2^{2}}+\frac{3-3i}{1^{2}+1^{2}} ][ \frac{6-16+12i+8i}{2^{2}+4^{2}} ] $ $ =( \frac{2+4i+15-15i}{10} )( \frac{-1+2i}{2} ) $ $ =\frac{(17-11i)(-1+2i)}{20}=\frac{5+45i}{20}=\frac{1}{4}+\frac{9}{4}i $ .