Complex Numbers And Quadratic Equations question 413

Question: $ \frac{3+2i\sin \theta }{1-2i\sin \theta } $ will be real, if $ \theta $ = [IIT 1976; EAMCET 2002]

Options:

A) $ 2n\pi $

B) $ n\pi +\frac{\pi }{2} $

C) $ n\pi $

D) None of these [Where $ n $ is an integer]

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{(3+2i\sin \theta )(1+2i\sin \theta )}{(1-2i\sin \theta )(1+2i\sin \theta )} $ = $ ( \frac{3-4{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta } )+i( \frac{8\sin \theta }{1+4{{\sin }^{2}}\theta } ) $ Now, since it is real, therefore Im $ (z)=0 $
Þ $ \frac{8\sin \theta }{1+4{{\sin }^{2}}\theta } $ = 0 Þ $ \sin \theta =0 $ ,
$ \therefore $ $ \theta =n\pi $ where $ n=0 $ , 1, 2, 3, …… Trick: Check for (a), if $ n=0,\theta =0 $ the given number is absolutely real but (c) also satisfies this condition and in (a) and (c), (c) is most general value of $ \theta $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें