Complex Numbers And Quadratic Equations question 43

Question: The number of solutions of the equation $ z^{2}+\bar{z}=0 $ is

Options:

A) 1

B) 2

C) 3

D) 4

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ z=x+iy, $ so that $ \overline{z}=x-iy, $ therefore $ z^{2}+\overline{z}=0\Leftrightarrow (x^{2}-y^{2}+x)+i(2xy-y)=0 $ Equating real and imaginary parts, we get $ x^{2}-y^{2}+x=0 $ …..(i) and $ 2xy-y=0 $
Þ $ y=0 $ or $ x=\frac{1}{2} $ If $ y=0 $ , then (i) gives $ x^{2}+x=0\Rightarrow x=0 $ or $ x=-1 $ If $ x=\frac{1}{2}, $ Then $ x^{2}-y^{2}+x=0 $ Þ $ y^{2}=\frac{1}{4}+\frac{1}{2}=\frac{3}{4} $ Þ $ y=\pm \frac{\sqrt{3}}{2} $ Hence, there are four solutions in all.