Complex Numbers And Quadratic Equations question 436

Question: Let $ z_1,z_2 $ be two complex numbers such that $ z_1+z_2 $ and $ z_1z_2 $ both are real, then [RPET 1996]

Options:

A) $ z_1=-z_2 $

B) $ z_1={{\bar{z}}_2} $

C) $ z_1=-{{\bar{z}}_2} $

D) $ z_1=z_2 $

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ z_1=a+ib,z_2=c+id $ , then $ z_1+z_2 $ is real
Þ $ (a+c)+i(b+d) $ is real Þ $ b+d=0 $
Þ $ d=-b $ …..(i) $ z_1z_2 $ is real
Þ $ (ad-bd)+i(ac+bc) $ is real Þ $ ad+bc=0 $
Þ $ a(-b)+bc=0 $ Þ $ a=c $ \ $ z_1=a+ib=c-id={{\bar{z}}_2} $ $ (\because a=c $ and $ b=-d) $