Complex Numbers And Quadratic Equations question 442

Question: If $ z=1+i, $ then the multiplicative inverse of z2 is (where i = $ \sqrt{-1} $ ) [Karnataka CET 1999]

Options:

A) 2 si

B) 1 - i

C) - i/2

D) i/2

Show Answer

Answer:

Correct Answer: C

Solution:

Given $ z=1+i $ and $ i=\sqrt{-1}. $ Squaring both sides, we get $ z^{2}={{(1+i)}^{2}}=1+2i+i^{2}=1+2i-1 $ or $ z^{2}=2i. $ Since it is multiplicative identity, therefore multiplicative inverse of $ z^{2}=\frac{1}{2i}\times \frac{i}{i}=\frac{i}{2i^{2}}=-\frac{i}{2}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें