Complex Numbers And Quadratic Equations question 442

Question: If $ z=1+i, $ then the multiplicative inverse of z2 is (where i = $ \sqrt{-1} $ ) [Karnataka CET 1999]

Options:

A) 2 si

B) 1 - i

C) - i/2

D) i/2

Show Answer

Answer:

Correct Answer: C

Solution:

Given $ z=1+i $ and $ i=\sqrt{-1}. $ Squaring both sides, we get $ z^{2}={{(1+i)}^{2}}=1+2i+i^{2}=1+2i-1 $ or $ z^{2}=2i. $ Since it is multiplicative identity, therefore multiplicative inverse of $ z^{2}=\frac{1}{2i}\times \frac{i}{i}=\frac{i}{2i^{2}}=-\frac{i}{2}. $