Complex Numbers And Quadratic Equations question 443
Question: If $ | \begin{aligned} & 6i-3i1 \\ & 43i-1 \\ & 203i \\ \end{aligned} | $ = $ x+iy $ , then (x, y) is [MP PET 2000]
Options:
A) (3, 1)
B) (1, 3)
C) (0, 3)
D) (0, 0)
Show Answer
Answer:
Correct Answer: D
Solution:
$ | \begin{matrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \\ \end{matrix} | $ = $ x+iy $
Þ $ | \begin{matrix} 6i+4 & 0 & 0 \\ 4 & 3i & -1 \\ 20 & 3 & i \\ \end{matrix} |=x+iy $ $ [R_1\to R_1+R_2] $
Þ $ (6i+4)(3i^{2}+3) $ = $ x+iy $
Þ $ (6i+4)(-3+3)=x+iy $
Þ $ x+iy=0=0+i.0 $
Þ $ (x,y)=(0,0) $ .