Complex Numbers And Quadratic Equations question 453

Question: If for complex numbers, $ z_1 $ and $ z_2 $ arg ( $ z_1 $ ) - arg( $ z_2 $ )=0 then $ | z_1-z_2 | $ is equal to

Options:

A) $ | z_1 |+| z_2 | $

B) $ | z_1 |-| z_2 | $

C) $ | z_1-z_2 | $

D) 0

Show Answer

Answer:

Correct Answer: C

Solution:

[c] We have, $ {{| z_1-z_2 |}^{2}}={{| z_1 |}^{2}}+{{| z_2 |}^{2}}-2| z_1 || z_2 |\cos ({\theta_1}-{\theta_2}) $ Where $ {\theta_1} $ = are $ (z_1) $ and $ {\theta_2} $ =arg $ (z_2) $ .given, Arg $ (z_1-z_2) $ =0.

$ \Rightarrow {{| z_1-z_2 |}^{2}}={{| z_1 |}^{2}}+{{| z_2 |}^{2}}-2| z_1 || z_2 | $ $ ={{(| z_1 |-| z_2 |)}^{2}} $
$ \Rightarrow | z_1-z_2 |. = || z_1- |. . z_2 | | $