Complex Numbers And Quadratic Equations question 458

Question: If $ b_1b_2 $ =2( $ c_1+c_2 $ ), then at least one of the equations $ x^{2}+b_1x+c_1=0 $ and $ x^{2}+b_2x+C_2=0 $ has

Options:

A) imaginary

B) real roots

C) purely imaginary roots

D) none of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ LetD_1andD_2 $ be desicriminants of $ x^{2}+b_1x+c_1=0 $ $ andx^{2}+b_2x+c_2=0,respectively.Then, $ $ D_1+D_2=b_1^{2}-4c_1+b_2^{2}-4c_2 $ $ =(b_1^{2}+b_2^{2})-4(c_1+c_2) $ $ =b_1^{2}+b_2^{2}-2b_1b_2[\therefore b_1b_2=2(c_1+c_2)] $ $ ={{(b_1-b_2)}^{2}}\ge 0 $

$ \Rightarrow D_1\ge 0orD_2\ge 0orD_1andD_2 $ both are positive Hence, at least one of the equations has real roots.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें