Complex Numbers And Quadratic Equations question 459

Question: If $ \alpha ,\beta $ are the roots of the equation $ u^{2}-2u+2=0 $ and if $ \cot \theta =x+1 $ , then $ [{{(x+\alpha )}^{n}}-{{(x+\beta )}^{n}}]/[\alpha -\beta ] $ is equal to

Options:

A) $ \frac{\sin n\theta }{{{\sin }^{n}}\theta } $

B) $ \frac{\cos n\theta }{{{\cos }^{n}}\theta } $

C) $ \frac{\sin n\theta }{{{\cos }^{n}}\theta } $

D) $ \frac{\cos n\theta }{{{\sin }^{n}}\theta } $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ u^{2}-2u+2=0\Rightarrow u=1\pm i $

$ \Rightarrow \frac{{{(x+\alpha )}^{2}}-{{(x+\beta )}^{n}}}{\alpha -\beta } $ $ =\frac{{{[(cot\theta -1)+(1+i)]}^{n}}-{{[(cot\theta -1)+(1-i)]}^{n}}}{2i} $ $ (\therefore cot\theta -1=x) $ $ =\frac{{{(cos\theta +isin\theta )}^{n}}-{{(cos\theta -isin\theta )}^{n}}}{{{\sin }^{n}}\theta 2i} $ $ =\frac{2i\sin n\theta }{{{\sin }^{n}}\theta 2i}=\frac{\sin n\theta }{{{\sin }^{n}}\theta } $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें