Complex Numbers And Quadratic Equations question 463

Question: If $ z_1 $ , $ z_2 $ , $ z_3 $ are the vertices of an equilateral triangle ABC such that $ | z_1-i | $ = $ | z_2-i | $ = $ | z_3-i | $ ,then $ | z_1+z_2+z_3 | $ equals to

Options:

A) $ 3\sqrt{3} $

B) $ \sqrt{3} $

C) 3

D) $ \frac{1}{3\sqrt{3}} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Given that. $ | z_1-i |=| z_2-i |=| z_3-i | $ Hence, $ z_1 $ , $ z_2 $ , $ z_3 $ , lie on the circle whose center is i. Also cirucmcenter coincides.

$ \therefore \frac{z_1+z_2+z_3}{3}=i $

$ \Rightarrow | z_1+z_2+z_3 |=3 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें