Complex Numbers And Quadratic Equations question 466

Question: If a, b $ \in $ R, $ a\ne 0 $ and the quadratic equation $ ax^{2}-bx+1=0 $ has imaginary roots then $ (a+b+1) $ is

Options:

A) positive

B) negative

C) zero

D) dependent on the sign of b

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ D=b^{2}-4a<0\Rightarrow a>0 $ Therefore the graph is concave upwards. $ f(x)>0,\forall x\in R $
$ \Rightarrow f(-1)>0 $
$ \Rightarrow a+b+1>0 $