Complex Numbers And Quadratic Equations question 469

Question: If z and $ \omega $ are two non-zero complex numbers such that $ | z |=| \omega | $ and arg z + arg $ \omega $ = $ \pi $ , then z equals

Options:

A) $ \bar{\omega } $

B) - $ \bar{\omega } $

C) $ \omega $

D) - $ \omega $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Let $ | z |=| \omega |=r $

$ \therefore z=r{e^{i\theta }},\omega =r{e^{i\theta }} $ Where $ \theta +\phi =\pi $

$ \therefore \overline{\omega }=r{e^{-i\phi }} $

$ \therefore z=r{e^{i(\pi -\phi )}}=r{e^{i\pi }}{e^{-i\phi }}=r{{-e}^{-i\phi }}=-\overline{\omega } $