Complex Numbers And Quadratic Equations question 518
Question: If the product of the roots of the equation $ (a+1)x^{2}+(2a+3)x+(3a+4)=0 $ be 2, then the sum of roots is
Options:
A) 1
B) -1
C) 2
D) -2
Show Answer
Answer:
Correct Answer: B
Solution:
It is given that $ \alpha \beta =2\Rightarrow \frac{3a+4}{a+1}=2 $ Þ $ 3a+4=2a+2 $ Þ $ a=-2 $ Also $ \alpha +\beta =-\frac{2a+3}{a+1} $ Putting this value of a, we get sum of roots $ =-\frac{2a+3}{a+1}=-\frac{-4+3}{-2+1}=-1 $ .