Complex Numbers And Quadratic Equations question 520

Question: If $ \alpha ,\beta $ are the roots of the equation $ ax^{2}+bx+c=0 $ then the equation whose roots are $ \alpha +\frac{1}{\beta } $ and $ \beta +\frac{1}{\alpha } $ , is [RPET 1991]

Options:

A) $ acx^{2}+(a+c)bx+{{(a+c)}^{2}}=0 $

B) $ abx^{2}+(a+c)bx+{{(a+c)}^{2}}=0 $

C) $ acx^{2}+(a+b)cx+{{(a+c)}^{2}}=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Here $ \alpha +\beta =-\frac{b}{a} $ and $ \alpha \beta =\frac{c}{a} $ If roots are $ \alpha +\frac{1}{\beta },\beta +\frac{1}{\alpha }, $ then sum of roots are $ =( \alpha +\frac{1}{\beta } )+( \beta +\frac{1}{\alpha } )=(\alpha +\beta )+\frac{\alpha +\beta }{\alpha \beta }=-\frac{b}{ac}(a+c) $ and product $ =( \alpha +\frac{1}{\beta } )( \beta +\frac{1}{\alpha } ) $ $ =\alpha \beta +1+1+\frac{1}{\alpha \beta }=2+\frac{c}{a}+\frac{a}{c} $ $ =\frac{2ac+c^{2}+a^{2}}{ac}=\frac{{{(a+c)}^{2}}}{ac} $ Hence required equation is given by $ x^{2}+\frac{b}{ac}(a+c)x+\frac{{{(a+c)}^{2}}}{ac}=0 $
Þ $ acx^{2}+(a+c)bx+{{(a+c)}^{2}}=0 $ . Trick: Let $ a=1 $ , $ b=-3,c=2 $ , then $ \alpha =1, $ $ \beta =2 $
$ \therefore \alpha +\frac{1}{\beta }=\frac{3}{2} $ and $ \beta +\frac{1}{\alpha }=3 $ Therefore, required equation must be $ (x-3)(2x-3)=0 $ i.e. $ 2x^{2}-9x+9=0 $ Here (a) gives this equation on putting $ a=1,b=-3,c=2 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें