Complex Numbers And Quadratic Equations question 531
Question: If the sum of the roots of the equation $ ax^{2}+bx+c=0 $ be equal to the sum of their squares, then
Options:
A) $ a(a+b)=2bc $
B) $ c(a+c)=2ab $
C) $ b(a+b)=2ac $
D) $ b(a+b)=ac $
Show Answer
Answer:
Correct Answer: C
Solution:
Let  $ \alpha  $  and  $ \beta  $  be two roots of   $ ax^{2}+bx+c=0 $  Then  $ \alpha +\beta =-\frac{b}{a} $ and  $ \alpha \beta =\frac{c}{a} $ 
Þ   $ {{\alpha }^{2}}+{{\beta }^{2}}={{(\alpha +\beta )}^{2}}-2\alpha \beta =\frac{b^{2}}{a^{2}}-2\frac{c}{a} $  So under condition  $ \alpha +\beta =a^{2}+{{\beta }^{2}} $
Þ   $ -\frac{b}{a}=\frac{b^{2}-2ac}{a^{2}} $
Þ  $ b(a+b)=2ac $ .
 BETA
  BETA 
             
             
           
           
           
          