Complex Numbers And Quadratic Equations question 533

Question: If $ \alpha ,\beta $ be the roots of the equation $ x^{2}-2x+3=0 $ , then the equation whose roots are $ \frac{1}{{{\alpha }^{2}}} $ and $ \frac{1}{{{\beta }^{2}}} $ is

Options:

A) $ x^{2}+2x+1=0 $

B) $ 9x^{2}+2x+1=0 $

C) $ 9x^{2}-2x+1=0 $

D) $ 9x^{2}+2x-1=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \alpha ,\beta $ be the roots of $ x^{2}-2x+3=0 $ , then $ \alpha +\beta =2 $ and $ \alpha \beta =3 $ . Now required equation whose roots are $ \frac{1}{{{\alpha }^{2}}},\frac{1}{{{\beta }^{2}}} $ is $ x^{2}-( \frac{1}{{{\alpha }^{2}}}+\frac{1}{{{\beta }^{2}}} )x+\frac{1}{{{\alpha }^{2}}{{\beta }^{2}}}=0 $
Þ $ x^{2}-( -\frac{2}{9} )x+\frac{1}{9}=0 $ Þ $ 9x^{2}+2x+1=0 $ .