Complex Numbers And Quadratic Equations question 540

Question: If the sum of the roots of the quadratic equation $ ax^{2}+bx+c=0 $ is equal to the sum of the squares of their reciprocals, then $ a/c,b/a,c/b $ are in [AIEEE 2003; DCE 2000]

Options:

A) A.P.

B) G.P.

C) H.P.

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

As given, if $ \alpha ,\beta $ be the roots of the quadratic equation, then $ \alpha +\beta =\frac{1}{{{\alpha }^{2}}}+\frac{1}{{{\beta }^{2}}}=\frac{{{(\alpha +\beta )}^{2}}-2\alpha \beta }{{{\alpha }^{2}}{{\beta }^{2}}} $
Þ $ -\frac{b}{a}=\frac{(b^{2}/a^{2})-(2c/a)}{(c^{2}/a^{2})}=\frac{b^{2}-2ac}{c^{2}} $
Þ $ \frac{2a}{c}=\frac{b^{2}}{c^{2}}+\frac{b}{a}=\frac{(ab^{2}+bc^{2})}{ac^{2}} $
Þ $ 2a^{2}c=ab^{2}+bc^{2}\Rightarrow \frac{2a}{b}=\frac{b}{c}+\frac{c}{a} $
Þ $ \frac{c}{a},\frac{a}{b},\frac{b}{c} $ are in A.P. Þ $ \frac{a}{c},\frac{b}{a},\frac{c}{b} $ are in H.P.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें