Complex Numbers And Quadratic Equations question 549

Question: If $ \alpha ,\beta $ are the roots of the equation $ x^{2}+ax+b=0 $ then the value of $ {{\alpha }^{3}}+{{\beta }^{3}} $ is equal to [RPET 1989; Pb. CET 1991]

Options:

A) $ -(a^{3}+3ab) $

B) $ a^{3}+3ab $

C) $ -a^{3}+3ab $

D) $ a^{3}-3ab $

Show Answer

Answer:

Correct Answer: C

Solution:

Sum of root $ \alpha +\beta =-a $ and product of roots $ \alpha \beta =b $ So, $ {{\alpha }^{3}}+{{\beta }^{3}}=(\alpha +\beta )({{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}}) $ = $ (\alpha +\beta )[{{(\alpha +\beta )}^{2}}-3\alpha \beta ]=-a(a^{2}-3b)=-a^{3}+3ab $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें