Complex Numbers And Quadratic Equations question 562

Question: Let $ \alpha ,{{\alpha }^{2}} $ be the roots of $ x^{2}+x+1=0 $ , then the equation whose roots are $ {{\alpha }^{31}},{{\alpha }^{62}} $ is [AMU 1999]

Options:

A) $ x^{2}-x+1=0 $

B) $ x^{2}+x-1=0 $

C) $ x^{2}+x+1=0 $

D) $ x^{60}+x^{30}+1=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

Give equation $ x^{2}+x+1=0 $
Þ $ \alpha +{{\alpha }^{2}}=-1 $ …..(i) and $ {{\alpha }^{3}}=1 $ …..(ii) Now the equation whose roots are $ {{\alpha }^{31}} $ and $ {{\alpha }^{62}} $
$ \therefore $ $ {{\alpha }^{31}}+{{\alpha }^{62}}={{\alpha }^{31}}(1+{{\alpha }^{31}}) $
Þ $ {{\alpha }^{31}}+{{\alpha }^{62}}={{\alpha }^{30}}.\alpha (1+{{\alpha }^{30}}.\alpha ) $ $ {{\alpha }^{31}}+{{\alpha }^{62}}={{({{\alpha }^{3}})}^{10}}.\alpha {1+{{({{\alpha }^{3}})}^{10}}.\alpha } $
Þ $ {{\alpha }^{31}}+{{\alpha }^{62}}=\alpha (1+\alpha ) $
Þ $ {{\alpha }^{31}}+{{\alpha }^{62}}=-1 $ [from (i)] Again $ {{\alpha }^{31}}.{{\alpha }^{62}}={{\alpha }^{93}} $ Þ $ {{\alpha }^{31}}.{{\alpha }^{62}}={{[{{\alpha }^{3}}]}^{31}}=1 $ Required equation is $ x^{2}-({{\alpha }^{31}}+{{\alpha }^{62}})x+{{\alpha }^{31}}.{{\alpha }^{62}}=0 $
Þ $ x^{2}+x+1=0 $ . Trick: $ \alpha =\frac{-1+i\sqrt{3}}{2}=\omega $ $ {{\alpha }^{2}}=\frac{-1-i\sqrt{3}}{2}={{\omega }^{2}} $
$ \therefore {{\alpha }^{31}}={{\omega }^{31}}=\omega $ and $ {{\alpha }^{62}}={{\omega }^{62}}={{\omega }^{2}} $
$ \therefore $ Equation is $ x^{2}+x+1=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें