Complex Numbers And Quadratic Equations question 565

Question: If $ \alpha $ and $ \beta $ are the roots of the equation $ ax^{2}+bx+c=0 $ $ (a\ne 0; $ $ a,b,c $ being different), then $ (1+\alpha +{{\alpha }^{2}}) $ $ (1+\beta +{{\beta }^{2}}) $ = [DCE 2000]

Options:

A) Zero

B) Positive

C) Negative

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \alpha +\beta =-b/a,\alpha \beta =c/a $ $ (1+\alpha +{{\alpha }^{2}})(1+\beta +{{\beta }^{2}}) $ $ =1+(\alpha +\beta )+({{\alpha }^{2}}+{{\beta }^{2}})+\alpha \beta +\alpha \beta (\alpha +\beta )+{{\alpha }^{2}}{{\beta }^{2}} $ $ =1+(\alpha +\beta )+{{(\alpha +\beta )}^{2}}-\alpha \beta +\alpha \beta (\alpha +\beta )+{{(\alpha \beta )}^{2}} $ $ =1-\frac{b}{a}+\frac{b^{2}}{a^{2}}-\frac{c}{a}+( \frac{c}{a} )( -\frac{b}{a} )+\frac{c^{2}}{a^{2}} $ $ =(a^{2}+b^{2}+c^{2}-ab-bc-ca)/a^{2} $ $ =[(a-b^{2})+{{(b-c)}^{2}}+{{(c-a)}^{2}}]/2a^{2} $ which is positive. Trick: It is almost clear that for every different values of a,b,c the function is zero, positive or negative. Therefore let $ a=1,b=0,c=-4 $ so that $ \alpha =2,\ \beta =-2 $ . Obviously the expression has positive value.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें