Complex Numbers And Quadratic Equations question 566

Question: If the roots of the equation $ ax^{2}+bx+c=0 $ are real and of the form $ \frac{\alpha }{\alpha -1} $ and $ \frac{\alpha +1}{\alpha } $ , then the value of $ {{(a+b+c)}^{2}} $ is [AMU 2000]

Options:

A) $ b^{2}-4ac $

B) $ b^{2}-2ac $

C) $ 2b^{2}-ac $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Here $ \frac{\alpha +1}{\alpha }+\frac{\alpha }{\alpha -1}=-\frac{b}{a} $ and $ \frac{\alpha +1}{\alpha -1}=\frac{c}{a} $ \ $ \alpha =\frac{c+a}{c-a} $ and $ \frac{2{{\alpha }^{2}}-1}{\alpha (\alpha -1)}=-\frac{b}{a} $ Substituting $ \alpha $ , we get $ {{(a+b+c)}^{2}}=b^{2}-4ac $ . Note: Students should remember this fact.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें