Complex Numbers And Quadratic Equations question 57

Question: If $ z_1 $ and $ z_2 $ are any two complex numbers then $ |z_1+z_2{{|}^{2}} $ $ +|z_1-z_2{{|}^{2}} $ is equal to [MP PET 1993; RPET 1997]

Options:

A) $ 2|z_1{{|}^{2}}|z_2{{|}^{2}} $

B) $ 2|z_1{{|}^{2}}+2|z_2{{|}^{2}} $

C) $ |z_1{{|}^{2}}+|z_2{{|}^{2}} $

D) $ 2|z_1||z_2| $

Show Answer

Answer:

Correct Answer: B

Solution:

$ |z_1+z_2{{|}^{2}}+|z_1-z_2{{|}^{2}} $ $ ={{(x_1+x_2)}^{2}}+{{(y_1+y_2)}^{2}}+{{(x_1-x_2)}^{2}}+{{(y_1-y_2)}^{2}} $ $ =2(x_1^{2})+2(y_1^{2})+2(x_2^{2})+2(y_2^{2})=2|z_1{{|}^{2}}+2|z_2{{|}^{2}} $