Complex Numbers And Quadratic Equations question 575

Question: If $ \alpha ,\beta $ are the roots of $ x^{2}-2x+4=0 $ , then $ {{\alpha }^{5}}+{{\beta }^{5}} $ is equal to [EAMCET 1990]

Options:

A) 16

B) 32

C) 64

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Here $ {{\alpha }^{2}}+{{\beta }^{2}}=-4,{{\alpha }^{3}}+{{\beta }^{3}}=-16 $ \ $ ({{\alpha }^{2}}+{{\beta }^{2}})({{\alpha }^{3}}+{{\beta }^{3}})={{\alpha }^{5}}+{{\beta }^{5}}+{{\alpha }^{2}}{{\beta }^{2}}(\alpha +\beta ) $
Þ $ (-4)(-16)={{\alpha }^{5}}+{{\beta }^{5}}+(16)(2) $ Þ $ {{\alpha }^{5}}+{{\beta }^{5}}=32 $