Complex Numbers And Quadratic Equations question 58

Question: If z is a complex number such that $ \frac{z-1}{z+1} $ is purely imaginary, then [MP PET 1998, 2002]

Options:

A) $ |z|=0 $

B) $ |z|=1 $

C) $ |z|>1 $

D) $ |z|<1 $

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ \frac{z-1}{z+1}=iy $ where $ y\in R $ This gives $ z=\frac{1+iy}{1-iy}=\frac{1+iy}{1-iy}\times \frac{1+iy}{1+iy}=\frac{(1-y^{2})+2iy}{1+y^{2}} $
$ \therefore $ $ |z|=\frac{1}{1+y^{2}}\sqrt{{{(1-y^{2})}^{2}}+4y^{2}}=\frac{1+y^{2}}{1+y^{2}}=1 $ .