Complex Numbers And Quadratic Equations question 581
Question: If $ 3+4i $ is a root of the equation $ x^{2}+px+q=0 $ (p, q are real numbers), then [EAMCET 1985]
Options:
A) $ p=6,q=25 $
B) $ p=6,q=1 $
C) $ p=-6,q=-7 $
D) $ p=-6,q=25 $
Show Answer
Answer:
Correct Answer: D
Solution:
Since $ 3+4i $ is a root of the equation $ x^{2}+px+q=0, $ therefore its other root is $ 3-4i $ Now sum of the roots $ =-p $ and product of the roots = q Therefore $ p=-6,q=25 $ .