Complex Numbers And Quadratic Equations question 581

Question: If $ 3+4i $ is a root of the equation $ x^{2}+px+q=0 $ (p, q are real numbers), then [EAMCET 1985]

Options:

A) $ p=6,q=25 $

B) $ p=6,q=1 $

C) $ p=-6,q=-7 $

D) $ p=-6,q=25 $

Show Answer

Answer:

Correct Answer: D

Solution:

Since $ 3+4i $ is a root of the equation $ x^{2}+px+q=0, $ therefore its other root is $ 3-4i $ Now sum of the roots $ =-p $ and product of the roots = q Therefore $ p=-6,q=25 $ .