Complex Numbers And Quadratic Equations question 584

Question: If $ \alpha ,\beta $ are the roots of the equation $ lx^{2}+mx+n=0 $ , then the equation whose roots are $ {{\alpha }^{3}}\beta $ and $ \alpha {{\beta }^{3}} $ is [MP PET 1997]

Options:

A) $ l^{4}x^{2}-nl(m^{2}-2nl)x+n^{4}=0 $

B) $ l^{4}x^{2}+nl(m^{2}-2nl)x+n^{4}=0 $

C) $ l^{4}x^{2}+nl(m^{2}-2nl)x-n^{4}=0 $

D) $ l^{4}x^{2}-nl(m^{2}+2nl)x+n^{4}=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

Taking $ l=1,m=-3,n=2\Rightarrow \alpha =2,\beta =1 $ .