Complex Numbers And Quadratic Equations question 594

Question: If a, b are roots of $ x^{2}-3x+1=0, $ then the equation whose roots are $ \frac{1}{\alpha -2},\frac{1}{\beta -2} $ is [RPET 1999]

Options:

A) $ x^{2}+x-1=0 $

B) $ x^{2}+x+1=0 $

C) $ x^{2}-x-1=0 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \alpha ,\beta $ are the roots of the equation $ x^{2}-3x+1=0 $
$ \therefore \alpha +\beta =3 $ and $ \alpha \beta =1 $ $ S=\frac{1}{\alpha -2}+\frac{1}{\beta -2}=\frac{\alpha +\beta -4}{\alpha \beta -2(\alpha +\beta )+4} $ $ =\frac{3-4}{1-2.3+4}=1 $ and $ P=\frac{1}{(\alpha -2)(\beta -2)}=\frac{1}{\alpha \beta -2(\alpha +\beta )+4}=-1 $ Hence the equation whose roots are $ \frac{1}{\alpha -2} $ and $ \frac{1}{\beta -2} $ are $ x^{2}-Sx+P=0\Rightarrow x^{2}-x-1=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें