Complex Numbers And Quadratic Equations question 61

Question: If $ z_1 $ and $ z_2 $ are two complex numbers satisfying the equation $ | \frac{z_1+z_2}{z_1-z_2} | $ =1, then $ \frac{z_1}{z_2} $ is a number which is

Options:

A) Positive real

B) Negative real

C) Zero or purely imaginary

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Given $ | \frac{z_1+z_2}{z_1-z_2} |=1 $ Þ $ \frac{z_1+z_2}{z_1-z_2}=\cos \theta +i\sin \theta $ (say) Þ $ \frac{z_1}{z_2}=\frac{1+\cos \theta +i\sin \theta }{-1+\cos \theta +i\sin \theta }=-i\cot \frac{\theta }{2} $ which is zero, if $ \theta =n\pi (n\in I), $ and is otherwise purely imaginary.