Complex Numbers And Quadratic Equations question 63
Question: If $ z_1\text{ and }z_2 $ be complex numbers such that $ z_1\ne z_2 $ and $ |z_1|=|z_2| $ . If $ z_1 $ has positive real part and $ z_2 $ has negative imaginary part, then $ \frac{(z_1+z_2)}{(z_1-z_2)} $ may be [IIT 1986]
Options:
A) Purely imaginary
B) Real and positive
C) Real and negative
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
Let  $ z_1=a+ib=(a,b) $ and  $ z_2=c-id=(c,-d) $  Where  $ a>0 $ and  $ d>0 $  ……(i) Then  $ |z_1|=|z_2| $
Þ  $ a^{2}+b^{2}=c^{2}+d^{2} $  Now  $ \frac{z_1+z_2}{z_1-z_2}=\frac{(a+ib)+(c-id)}{(a+ib)-(c-id)} $                       $ =\frac{[(a+c)+i(b-d)][(a-c)-i(b+d)]}{[(a-c)+i(b+d)][(a-c)-i(b+d)]} $                       $ =\frac{(a^{2}+b^{2})-(c^{2}+d^{2})-2(ad+bc)i}{a^{2}+c^{2}-2ac+b^{2}+d^{2}+2bd} $   $ \frac{-(ad+bc)i}{a^{2}+b^{2}-ac+bd} $  [using (i)]
$ \therefore  $  $ \frac{(z_1+z_2)}{(z_1-z_2)} $  is purely imaginary. However if  $ ad+bc=0 $ , then  $ \frac{(z_1+z_2)}{(z_1-z_2)} $  will be equal to zero. According to the conditions of the equation, we can have  $ ad+bc=0 $  Trick: Assume any two complex numbers satisfying both conditions i.e.,  $ z_1\ne z_2 $ and  $ |z_1|=|z_2| $  Let  $ z_1=2+i,z_2=1-2i, $
$ \therefore \frac{z_1+z_2}{z_1-z_2}=\frac{3-i}{1+3i}=-i $  Hence the result.
 BETA
  BETA 
             
             
           
           
           
          