Complex Numbers And Quadratic Equations question 63

Question: If $ z_1\text{ and }z_2 $ be complex numbers such that $ z_1\ne z_2 $ and $ |z_1|=|z_2| $ . If $ z_1 $ has positive real part and $ z_2 $ has negative imaginary part, then $ \frac{(z_1+z_2)}{(z_1-z_2)} $ may be [IIT 1986]

Options:

A) Purely imaginary

B) Real and positive

C) Real and negative

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ z_1=a+ib=(a,b) $ and $ z_2=c-id=(c,-d) $ Where $ a>0 $ and $ d>0 $ ……(i) Then $ |z_1|=|z_2| $ Þ $ a^{2}+b^{2}=c^{2}+d^{2} $ Now $ \frac{z_1+z_2}{z_1-z_2}=\frac{(a+ib)+(c-id)}{(a+ib)-(c-id)} $ $ =\frac{[(a+c)+i(b-d)][(a-c)-i(b+d)]}{[(a-c)+i(b+d)][(a-c)-i(b+d)]} $ $ =\frac{(a^{2}+b^{2})-(c^{2}+d^{2})-2(ad+bc)i}{a^{2}+c^{2}-2ac+b^{2}+d^{2}+2bd} $ $ \frac{-(ad+bc)i}{a^{2}+b^{2}-ac+bd} $ [using (i)]
$ \therefore $ $ \frac{(z_1+z_2)}{(z_1-z_2)} $ is purely imaginary. However if $ ad+bc=0 $ , then $ \frac{(z_1+z_2)}{(z_1-z_2)} $ will be equal to zero. According to the conditions of the equation, we can have $ ad+bc=0 $ Trick: Assume any two complex numbers satisfying both conditions i.e., $ z_1\ne z_2 $ and $ |z_1|=|z_2| $ Let $ z_1=2+i,z_2=1-2i, $
$ \therefore \frac{z_1+z_2}{z_1-z_2}=\frac{3-i}{1+3i}=-i $ Hence the result.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें