Complex Numbers And Quadratic Equations question 631

Question: If z is a complex number such that $ z+|z|=8+12i, $ then the value of $ |z^{2}| $ is equal to

Options:

A) 228

B) 144

C) 121

D) 169

Show Answer

Answer:

Correct Answer: D

Solution:

$ z+|z|=8+12i $
$ \Rightarrow x+iy+\sqrt{x^{2}+y^{2}}=8+12i $
$ \Rightarrow x+\sqrt{x^{2}+y^{2}}=8 $ …(i) & $ y=12 $ …(ii) $ (x=-5) $ So, $ z=-5+12i $
$ \Rightarrow |z|=\sqrt{25+144}=13 $
$ \Rightarrow |z^{2}|=|z{{|}^{2}}=169 $