Complex Numbers And Quadratic Equations question 635

Question: If $ z=x+iy,{z^{1/3}}=a-ib, $ then $ \frac{x}{a}-\frac{y}{b}=k(a^{2}-b^{2}) $ where k is equal to

Options:

A) 1

B) 2

C) 3

D) 4

Show Answer

Answer:

Correct Answer: D

Solution:

$ {z^{1/3}}=a-ib\Rightarrow z={{(a-ib)}^{3}} $
$ \therefore x+iy=a^{3}+ib^{3}-3ia^{2}b-3ab^{2}. $ Then $ x=a^{3}-3ab^{2}\Rightarrow \frac{x}{a}=a^{2}-3b^{2} $ $ y=b^{3}-3a^{2}b\Rightarrow \frac{y}{b}=b^{2}-3a^{2} $ So, $ \frac{x}{a}-\frac{y}{b}=4(a^{2}-b^{2}) $