Complex Numbers And Quadratic Equations question 636

Question: Let $ A_0A_1A_2A_3A_4A_5 $ be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments $ A_0A_1,A_0A_2 $ and $ A_0A_4 $ is

Options:

A) $ \frac{3}{4} $

B) $ 3\sqrt{3} $

C) 3

D) $ \frac{3\sqrt{3}}{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Let the vertices be $ z_0,z_1,……..z_5 $ w.r.t centre O as origin $ |z_0|=1, $ $ A_0A_1=|z_1-z_0|=|z_0{e^{i\theta }}-z_0| $
$ \therefore A_0A_1=|z_0||cos\theta +isin\theta -1| $ $ =1.\sqrt{{{(\cos \theta -1)}^{2}}+{{\sin }^{2}}\theta }=\sqrt{2(1-\cos \theta )} $
$ \therefore A_0A_1=\sqrt{2.2{{\sin }^{2}}\frac{\theta }{2}}=2\sin \frac{\theta }{2} $ Where $ \theta =\frac{2\pi }{6}=\frac{\pi }{3}. $ Replacing $ \theta $ by $ 2\theta $ and $ 4\theta $ we get, $ A_0A_2=2\sin \frac{2\theta }{2}=2\sin \theta $ & $ A_0A_4=2\sin \frac{4\theta }{2}=2\sin 2\theta $
$ \therefore (A_0A_1)(A_0A_2)(A_0A_4) $ $ =8\sin \frac{\pi }{6}\sin \frac{\pi }{3}\sin \frac{2\pi }{3} $ $ =8( \frac{1}{2} )( \frac{\sqrt{3}}{2} )( \frac{\sqrt{3}}{2} )=3 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें