Complex Numbers And Quadratic Equations question 637

Question: The values of k for which the equations $ x^{2}-kx-21=0 $ and $ x^{2}-3kx+35=0 $ will have a common roots are:

Options:

A) $ k=\pm 4 $

B) $ k=\pm 1 $

C) $ k=\pm 3 $

D) $ k=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ \alpha $ be the common root to the equations: $ x^{2}-kx-21=0 $ and $ x^{2}-3kx+35=0 $
$ \therefore ‘\alpha ’ $ satisfies both the equations
$ \therefore {{\alpha }^{2}}-k\alpha -21=0 $ …(i) and
$ \therefore {{\alpha }^{2}}-3k\alpha +35=0 $ …(ii) From (i) and (ii), $ {{\alpha }^{2}}-21=\frac{{{\alpha }^{2}}+35}{3} $
$ \Rightarrow 3{{\alpha }^{2}}-63={{\alpha }^{2}}+35 $
$ \Rightarrow {{\alpha }^{2}}=49\Rightarrow \alpha =\pm 7 $ Now, again by eliminating $ {{\alpha }^{2}} $ from (i) and (ii), we get $ k\alpha +21=3k\alpha -35 $
$ \Rightarrow 2k\alpha =56\Rightarrow k=\frac{56}{2\alpha } $ When $ \alpha =7 $ then $ k=4 $ When $ \alpha =-7 $ then $ k=-4 $ Hence, $ k=\pm 4 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें