Complex Numbers And Quadratic Equations question 639

Question: If one root of the equation $ (1-m)x^{2}+1x+1=0 $ is double the other and 1 is real, then what is the greatest value of m?

Options:

A) $ -\frac{9}{8} $

B) $ \frac{9}{8} $

C) $ -\frac{8}{9} $

D) $ \frac{8}{9} $

Show Answer

Answer:

Correct Answer: B

Solution:

Given equation is $ (\ell -m)x^{2}+\ell x+1=0 $ Roots are $ \alpha ,\beta . $ $ \because $ One root is double the other. $ \beta =2\alpha $ Sum of roots $ =\alpha +\beta $ $ 3\alpha =\frac{-\ell }{\ell -m} $ $ \alpha (2\alpha )=\frac{1}{(\ell -m)} $
$ \Rightarrow {{\alpha }^{2}}=\frac{{{\ell }^{2}}}{9{{(\ell -m)}^{2}}} $ $ 2{{\alpha }^{2}}=\frac{1}{\ell -m} $
$ \Rightarrow 2\frac{{{\ell }^{2}}}{9{{(\ell -m)}^{2}}}=\frac{1}{(\ell -m)} $
$ \Rightarrow \frac{2{{\ell }^{2}}}{9(\ell -m)}=1 $
$ \Rightarrow 2{{\ell }^{2}}=9(\ell -m)\Rightarrow 2{{\ell }^{2}}-9\ell +9m=0 $ For $ \ell $ to be real discriminant should be $ b^{2}-4ac\ge 0 $ $ 81-4\times 2\times 9m\ge 0 $ $ m\le \frac{9}{8}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें