Complex Numbers And Quadratic Equations question 643

Question: If $ | z_1 |=| z_2 |=…….| z_{n} |=1, $ then the value of $ | z_1+z_2+….z_{n} |-| \frac{1}{z_1}+\frac{1}{z_2}+……+\frac{1}{z_{n}} | $ is,

Options:

A) 0

B) 1

C) $ -1 $

D) None

Show Answer

Answer:

Correct Answer: A

Solution:

$ z_1{{\bar{z}}1}=z_2{{\bar{z}}2}=……..=z{n}{{\bar{z}}{n}}=1 $
$ \Rightarrow {{\bar{z}}1}=\frac{1}{z_1},{{\bar{z}}2}=\frac{1}{z_2},{{\bar{z}}3}=\frac{1}{z_3},…..,{{\bar{z}}{n}}=\frac{1}{z{n}} $
$ \therefore |z_1+z_2+…….+z
{n}|-| \frac{1}{z_1}+\frac{1}{z_2}+……+\frac{1}{z_{n}} | $
$ \therefore |z_1+z_2+….+z_{n}|-|{{\bar{z}}_1}+{{\bar{z}}2}+….+{{\bar{z}}{n}}|=0 $