Complex Numbers And Quadratic Equations question 645

Question: The value of a for which the sum of the squares of the roots of the equation $ 2x^{2}-2(a-2)x-(a+1)=0 $ is least, is

Options:

A) 1

B) $ 3/2 $

C) 2

D) None

Show Answer

Answer:

Correct Answer: B

Solution:

If $ \alpha ,\beta $ be the roots of the equation then $ \alpha +\beta =a-2, $ $ \alpha \beta =-\frac{a+1}{2} $ Sum of square of roots $ S={{\alpha }^{2}}+{{\beta }^{2}}={{(\alpha +\beta )}^{2}}-2\alpha \beta $ $ ={{(a-2)}^{2}}+(a+1)=a^{2}-3a+5 $ $ S=a^{2}-3a+\frac{9}{4}+\frac{11}{4} $ $ S={{( a-\frac{3}{2} )}^{2}}+\frac{11}{4} $ Clearly S is least when $ a-\frac{3}{2}=0\Rightarrow a=\frac{3}{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें