Complex Numbers And Quadratic Equations question 649

Question: If both the roots of $ k(6x^{2}+3)+rx+2x^{2}-1=0 $ and $ 6k(2x^{2}+1)+px+4x^{2}-2=0 $ are common, then $ 2r-p $ is equal to

Options:

A) $ -1 $

0

1

2

Show Answer

Answer:

Correct Answer: B

Solution:

Given equation can be written as $ (6k+2)x^{2}+rx+3k-1=0 $ … (i) and $ 2( 6k + 2 )x^{2} +px+ 2( 3k -1 ) = 0 $ … (ii) Condition for common root is $ \frac{12k+4}{6k+2}=\frac{p}{r}=\frac{6k-2}{3k-1}=2 $ or $ 2r-p=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें