Complex Numbers And Quadratic Equations question 652

Question: If $ \alpha $ and $ \beta $ be the values of x in $ m^{2}(x^{2}-x)+2mx+3=0 $ and $ m_1 $ and $ m_2 $ be two values of m for which $ \alpha $ and $ \beta $ are connected by the relation $ \frac{\alpha }{\beta }+\frac{\beta }{\alpha }=\frac{4}{3}. $ Then the value of $ \frac{m_1^{2}}{m_2}+\frac{m_2^{2}}{m_1} $ is

Options:

A) 6

B) 68

C) $ \frac{3}{68} $

D) $ -\frac{68}{3} $

Show Answer

Answer:

Correct Answer: D

Solution:

The given equation is $ {m^{2}}x^{2}+( 2m-m^{2} )x+3=0 $
$ \therefore \alpha +\beta =-\frac{2m-m^{2}}{m^{2}}=\frac{m-2}{m}and\alpha \beta =\frac{3}{m^{2}} $ Now $ \frac{\alpha }{\beta }+\frac{\beta }{\alpha }=\frac{4}{3}\Rightarrow \frac{{{\alpha }^{2}}+{{\beta }^{2}}}{\alpha \beta }=\frac{4}{3}\Rightarrow \frac{{{(\alpha +\beta )}^{2}}-2\alpha \beta }{\alpha \beta }=\frac{4}{3} $ Substituting the values, we get $ \frac{{{( \frac{m-2}{m} )}^{2}}-2.\frac{3}{m^{2}}}{\frac{3}{m^{2}}}=\frac{4}{3} $
$ \Rightarrow \frac{m^{2}-4m+4-6}{3}=\frac{4}{3}\Rightarrow m^{2}-4m-6=0 $ $ {m_1}andm_2 $ are roots of this equation, therefore $ {m_1}+m_2=4andm_1m_2=-6 $ The given expression is, $ \frac{m_1^{2}}{m_2}+\frac{m_2^{2}}{m_1}=\frac{m_1^{3}+m_2^{3}}{m_1m_2} $ $ =\frac{{{(m_1+m_2)}^{3}}-3m_1m_2(m_1+m_2)}{m_1m_2} $ $ =\frac{{{(4)}^{3}}-3.(-6).(4)}{-6}=-\frac{68}{3} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें