Complex Numbers And Quadratic Equations question 655
Question: If the roots of $ ax^{2}+bx+c=0 $ are $ \sin \alpha $ and $ \cos \alpha $ for some $ \alpha , $ then which one of the following is correct?
Options:
A) $ a^{2}+b^{2}=2ac $
B) $ b^{2}-c^{2}=2ab $
C) $ b^{2}-a^{2}=2ac $
D) $ b^{2}+c^{2}=2ab $
Show Answer
Answer:
Correct Answer: C
Solution:
Let  $ \sin \alpha  $  and  $ \cos \alpha  $  be the roots of  $ {ax^{2}}+bx+c=0 $  Now,  $ \sin  \alpha  + cos \alpha  = \frac{-b}{a} $  and  $ \sin  \alpha  + cos \alpha  = \frac{c}{a} $  Consider  $ \sin \alpha  + cos \alpha  = \frac{-b}{a} $  Squaring both side,  $ {{( \sin  \alpha  + cos \alpha  )}^{2}} =\frac{b^{2}}{a^{2}} $
$ \Rightarrow  {{\sin }^{2}}\alpha  + cos^{2} \alpha  + 2 sin \alpha  cos \alpha  = \frac{b^{2}}{a^{2}} $
$ \Rightarrow 1+\frac{2c}{a}=\frac{b^{2}}{a^{2}} $
$ \Rightarrow \frac{a+2c}{a}=\frac{b^{2}}{a^{2}}\Rightarrow a+2c=\frac{b^{2}}{a} $
$ \Rightarrow a^{2}+2ac=b^{2}\Rightarrow b^{2}-a^{2}=2ac $
 BETA
  BETA 
             
             
           
           
           
          