Complex Numbers And Quadratic Equations question 656
Question: If $ 1,\omega ,{{\omega }^{2}} $ are the three cube roots of unity, then what is $ \frac{(a{{\omega }^{6}}+b{{\omega }^{4}}+c{{\omega }^{2}})}{(b+c{{\omega }^{10}}+a{{\omega }^{8}})} $ equal to?
Options:
A) $ \frac{a}{b} $
B) b
C) $ \omega $
D) $ {{\omega }^{2}} $
Show Answer
Answer:
Correct Answer: C
Solution:
1,  $ \omega  $  and  $ {{\omega }^{2}} $ are the three cube roots of unity.
$ \Rightarrow 1+\omega +{{\omega }^{2}}=0and{{\omega }^{3}}=1 $  The given expression  $ \frac{a{{\omega }^{6}}+b{{\omega }^{4}}+c{{\omega }^{2}}}{b+c{{\omega }^{10}}+a{{\omega }^{8}}}=\frac{a+b\omega +c{{\omega }^{2}}}{b+c\omega +a{{\omega }^{2}}} $   $ [{{\omega }^{6}}=1,{{\omega }^{4}}=\omega ] $   $ =\frac{\omega (a+b\omega +c{{\omega }^{2}})}{\omega (b+c\omega +a{{\omega }^{2}})} $   $ [MultiplyingN^{r}andD^{r}by\omega ] $   $ =\frac{\omega (a+b\omega +c{{\omega }^{2}})}{(a{{\omega }^{3}}+b\omega +c{{\omega }^{2}})}=\frac{\omega (a+b\omega +c{{\omega }^{2}})}{(a+b\omega +c{{\omega }^{2}})}=\omega  $
 BETA
  BETA 
             
             
           
           
           
          