Complex Numbers And Quadratic Equations question 663

Question: Number of solutions of the equation, $ z^{3}+\frac{3{{| z |}^{2}}}{z}=0, $ where z is a complex number and $ |z|=\sqrt{3} $ is

Options:

A) 2

B) 3

C) 6

D) 4

Show Answer

Answer:

Correct Answer: D

Solution:

$ z^{3}+\frac{3{{| z |}^{2}}}{z}=0,\Rightarrow z^{3}+\frac{3z.\bar{z}}{z}=0 $
$ \Rightarrow z^{3}+3\bar{z}=0 $ Let $ z=r{e^{i\theta }} $
$ \Rightarrow r^{3}{e^{i3\theta }}+3r{e^{-i\theta }}=0 $
$ \Rightarrow {e^{i4\theta }}=-1\ [\because r=\sqrt{3}] $
$ \Rightarrow cos4\theta +i sin 4\theta = -1 $
$ \Rightarrow cos4\theta =-1 $ … (i) Now $ 0 \le \theta < 2\pi \Rightarrow 0 \le 4\theta < 8\pi $
$ \therefore \theta =\pi ,3\pi ,5\pi ,7\pi $