Complex Numbers And Quadratic Equations question 672

Question: If $ \frac{1}{2-\sqrt{-2}} $ is one of the roots of $ ax^{2}+bx+c=0, $ where a, b, c are real, then what are the values of a, b, c respectively?

Options:

A) $ 6,-4,1 $

B) $ 4,6,-1 $

C) $ 3,-2,1 $

D) $ 6,4,1 $

Show Answer

Answer:

Correct Answer: A

Solution:

Given quadratic equation is $ {ax^{2}} + bx + c = 0 $ whose one root is $ \frac{1}{2-\sqrt{-2}} $ Consider $ \frac{1}{2-\sqrt{-2}}=\frac{1}{2-\sqrt{2i}}\times \frac{2+\sqrt{2i}}{2+\sqrt{2}i} $ $ =\frac{2+\sqrt{2}i}{4+2}=\frac{2+\sqrt{2}i}{6} $
$ \therefore $ Another root will be $ \frac{2-\sqrt{2}i}{6} $ ( $ \because $ complex roots always occurs in pairs) Thus, sum of roots $ =( \frac{2+\sqrt{2}i}{6} )( \frac{2-\sqrt{2}i}{6} ) $ $ =\frac{4+2}{36}=\frac{1}{6} $
$ \therefore $ Required equation is $ {x^{2}}- ( sum of roots )x + ( product of roots ) = 0 $ $ x^{2}-\frac{4}{6}x+\frac{1}{6}=0 $
$ \Rightarrow 6x^{2}-4x+1=0 $ Thus, the values of a, b, c are 6, - 4, 1 respectively



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें