Complex Numbers And Quadratic Equations question 677

Question: The minimum value of $ | z |+|z-i| $ is

Options:

A) 0

B) 1

C) 2

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Using the result $ | z_1+z_2 |\le | z_1 |+| z_2 | $ we get $ | z | + | z - i | = | z | + | i - z | $ [since $ | z | = [ -z| ] $ $ \le |z+i-z|=| i |=1 $ minimum value of $ | z | + | z-i | $ is 1