Complex Numbers And Quadratic Equations question 677
Question: The minimum value of $ | z |+|z-i| $ is
Options:
A) 0
B) 1
C) 2
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
Using the result $ | z_1+z_2 |\le | z_1 |+| z_2 | $ we get $ | z | + | z - i | = | z | + | i - z | $ [since $ | z | = [ -z| ] $ $ \le |z+i-z|=| i |=1 $ minimum value of $ | z | + | z-i | $ is 1