Complex Numbers And Quadratic Equations question 680

Question: The equation whose roots are the $ n^{th} $ power of the roots of the equation $ x^{2}-2xcos\theta +1=0 $ is given by

Options:

A) $ x^{2}+2x\cos n\theta +1=0 $

B) $ x^{2}-2x\cos n\theta +1=0 $

C) $ x^{2}-2xsinn\theta +1=0 $

D) $ x^{2}+2xsinn\theta +1=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

The roots of the given equation are $ x=\frac{2\cos \theta \pm \sqrt{4{{\cos }^{2}}\theta -4}}{2}=\cos \theta \pm i\sin \theta $ Let $ \alpha =cos\theta +isin\theta \And \beta = cos \theta -i sin \theta $ Then $ {{\alpha }^{n}} = cosn\theta +isin n\theta $ $ {{\beta }^{n}} = cos n\theta - i sin n\theta $ [Using De Moivre Theorem] $ {{\alpha }^{n}}+{{\beta }^{n}}=2cosn\theta and{{\alpha }^{n}}\cdot {{\beta }^{n}}=1 $
$ \therefore $ The required equation is $ x^{2}-2x\cos n\theta +1=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें