Complex Numbers And Quadratic Equations question 687
Question: Let $ \alpha ,\beta $ be the roots of $ x^{2}+x+1=0. $ Then the equation whose roots are $ {{\alpha }^{229}} $ and $ {{\alpha }^{1004}} $ is
Options:
A) $ x^{2}-x-1=0 $
B) $ x^{2}-x+1=0 $
C) $ x^{2}+x-1=0 $
D) $ x^{2}+x+1=0 $
Show Answer
Answer:
Correct Answer: D
Solution:
The roots of  $ {x^{2}} + x +1 = 0 $  are  $ \omega  $  and  $ {{\omega }^{2}} $  [see the cube roots of unity in complex numbers] Let  $ \alpha  = \omega , \beta  = {{\omega }^{2}} $  Now  $ {{\alpha }^{229}} = {{\omega }^{229}} = {{\omega }^{228}}.\omega = {{( {{\omega }^{3}} )}^{76}} .{{\omega }^{2}} $   $ = \omega  = \alpha ( \because  {{\omega }^{3}} = 1 ) $   $ {{\alpha }^{1004}}={{\omega }^{1002}}.{{\omega }^{2}}={{({{\omega }^{3}})}^{334}}.{{\omega }^{2}}={{\omega }^{2}}=\beta  $
$ \therefore  $  equation with roots  $ {{\alpha }^{229}} $  and  $ {{\alpha }^{1004}} $  is same as the equation with roots  $ \alpha  $  and  $ \beta  $  i.e. the original equation.
 BETA
  BETA 
             
             
           
           
           
          