Complex Numbers And Quadratic Equations question 688

Question: If z, $ \omega z $ ane $ \bar{\omega }z $ are the vertices of a triangle, then the area of the triangle will be (where $ \omega $ is cube root of unity):

Options:

A) $ \frac{3|z{{|}^{2}}}{2} $

B) $ \frac{3\sqrt{3}|z{{|}^{2}}}{2} $

C) $ \frac{\sqrt{3}|z{{|}^{2}}}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Let the point A represents the complex number z, B represents $ \omega z $ and C represents $ \bar{\omega }z $ . $ \omega \And \bar{\omega } $ are complex cube roots of unity clearly coz means rotation of z by $ \frac{2\pi }{3}and{{\omega }^{2}}z $ $ (=\bar{\omega }z) $ means rotation of $ \omega zby\frac{2\pi }{3} $
$ \therefore \angle AOB = \angle BOC = \angle COA =\frac{2\pi }{3} $ also $ OA= OB = OC = | z | $ . That is the $ \Delta ABC $ is equilateral. Now $ AC = 2AD = 2 ( OA cos 30{}^\circ ) $ $ =2|z|\frac{\sqrt{3}}{2}=\sqrt{3}| z | $ $ Area of \Delta ABC= \frac{\sqrt{3}}{2}{{( side )}^{2}} = \frac{3\sqrt{3}}{2} {{| z |}^{2}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें